

Date: 20-11-2024

 Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 & K2 (CO1)

Q.No	Levels	Answer ALL the Questions	(10 x 2 = 20)
1	K1	Define differentiability of f at x .	
2		State Euler's theorem.	
3		Define order and degree of a differential equation.	
4		Recall and write any two methods of integration.	
5		Define gamma function.	
6	K2	Find the derivative of $y=x^2+2\sin x+3\cos x$ with respect to x .	
7		Write the procedure to find maximum value of $f(x)$.	
8		State the condition for the differential equation $M dx+N dy=0$ to be exact.	
9		Find $\int \cos^3 x \sin x dx$.	
10		Write the formula for $\int\limits_0^{\frac{\pi}{2}} \cos^n x dx$.	

SECTION B – K3 & K4 (CO2)

		Answer ALL the Questions	(4 x 10 = 40)
11	K3	Evaluate $\frac{dy}{dx} = \sec x$ if $y = \log \sqrt{\frac{1+\sin x}{1-\sin x}}$. [OR]	
12		Verify that $f_{xy} = f_{yx}$, when $f = x^y$.	
13		If $f = x^3 + y^3 + z^3 + 3xyz$, determine $f_x, f_{xx}, f_y, f_{xy}, f_{xyz}$ [OR]	
14		Select suitable method and solve the differential equation $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$.	
15		Point out the appropriate property of finite integral and evaluate $\int\limits_0^{\frac{\pi}{2}} \log \sin x dx$ [OR]	
16	K4	State and prove any three properties of definite integrals.	
17		With usual notations, show the following: (i) $\Gamma(n+1) = n!$. (ii) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	

18

[OR]

Prove that the function $y = x e^{\frac{-1}{2}x^2}$ satisfies the equation $x \frac{dy}{dx} = (1-x^2)y$.

SECTION C – K5 & K6 (CO3)

Answer ALL the Questions

(2 x 20 = 40)

19	K5	<p>(a) Evaluate: $\int_0^{\frac{\pi}{4}} \log \tan x dx$</p> <p>(b) Evaluate: $\int \frac{(x+7)}{x^2+4x+13} dx$</p> <p>(10+10)</p>
20		<p>[OR]</p> <p>Choose right method to find the general solution of the differential equation $(D^2+4D+5)y = e^x + x^2 + \cos 2x$ and solve it.</p>
21	K6	<p>(a) If $v = r^m$ where $r^2 = x^2 + y^2 + z^2$, defend that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = m(m+1)r^{m-2}$.</p> <p>(b) Determine the first derivative of the following function with respect to x</p> <p>(i) $y = 3 \log x + 3 \sqrt{x} - \left(\frac{1}{x}\right) + 2 \tan x$</p> <p>(ii) $y = x e^x \sin x$</p> <p>(13+7)</p>
22		<p>[OR]</p> <p>Derive the relation between beta and gamma functions.</p>

\$\$\$\$\$\$\$\$\$\$\$\$\$